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THE COMPRESSIBILITY OF PYROLYTIC GRAPHITE
By: N. L, Coleburn

ABSTRACT: The compressibility of pyrolytic graphite has been
dynamically measured at pressures up to 0.5 megabar by utilizing
explosive-generated shock waves. Shock and free-surface velocities
normal and parallel to the original plane of graphite deposition
were measured optically. The Rankine-Hugoniot shock wave

equations were used to determine the compression points corre-
spnding to the measured velocities. The measurements failed to
distinguish statistically between the two major crystal directions
in regard to dynamic compressibility characteristics.

The measured pressure-volume data for pyrolytic
graphite and the results of Alder and Christian on natural graphite
differ significantly at pressures above 100 kilobars. Within
the range of the present experiments no transition of pyrolytic
graphite to diamond was found.
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I. INTRODUCTION

In late 1961, Alder and Christian® reported pressure-volume
data for natural Ceylon graphite which had been compressed up to
0.8 megabars by shock waves. The authors interpreted their measure-
ments as showing the direct transformation of graphite to diamond
in the range of 0.3 to 0.4 megabar. Earlier in 1961, De Carli
and Jamieson® had recovered small diamonds by the transformation
of artificial graphite shocked to 0.3 megabar but were unable to
obtain this conversion by shocking pure hexagonal graphite. They
proposed that structural differences in the graphite accounted
for the different results. In reference to these results the
various forms of graphite are known to have dissimilar physical
and chemical properties. However the compressibility of pure
hexagonal graphite as a function of pressure has not been established,
primarily because significant differences have not been expected
in the compressibility of the various graphites and pure samples
of hexagonal graphite are not easily obtained.

Recent studies® *'® of more readily available pyrolytic
graphite have shown that this material has the layer-like
properties of pure hexagonal graphite, i.e., passes heat much
more readily in one direction than in another, has anisotropies
of sound velocity and anisotropies in normal modes of lattice
vibration. Further concerted efforts are being made to evaluate
other properties of pyrolytic graphite because of its possible
use as a re-entry body material. This paper reports the dynamic
compressibility of pyrolytic graphite at pressures up to 0.5
megabar. These pressures were obtained from explosive-generated
shock waves. The compressibility was determined from the dynanmic
pressure-volume curve, i.e., the shock Bugoniot, using optical
measurements of the shock wave and particle velocity as a function
of orientation (the shock wave propagation was directed parallel
and perpendicular to the M-axis). 7The pressure-volume data have
been compared to the dynamic measurements of Alder and Christian
and the static data of Bridgman® and Vereschagin’ on natural
graphite.

II. EXPERIMENTAL METHOD

Compressibility data were obtained from shock wave experi-
ments by relating the measured velocities, Uy, of the shock wave,
and u,,0f material behind the shock front to the pressure, P,
and specific volume, V, of the compressed material. The relation-
ships are given by the Rankine-Huconiot equations expressing
conservation of mass and momentum;

v, T s up)/lus é:s; A\Iﬁ\\ab\e ©copY
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P-P, =

<|~

. (U-uy) (up-uo) (2)

(The subscript, o, refers to conditions in the undisturbed
region immediately ahead of the shock front.) While the shock
wave velocity may be measured directly, the particle velocity
is determined indirectly by measuring the free-surface motion
of the shocked specimen. Motion of the free surface is pro-
duced by reflection of the shock wave as a rarefaction wave at
the free surface. The free surface acquires a velocity, vg,
which for a plane shock wave is almost identically twice the
particle velocity of the shocked material %/ °?,

u, = 2up . (3)
The particle velocity can be determined also from the method of
impedance-matching®®, i.e., by shock-loading the specimen with a
standard material whose equation of state is known, and measuring
the shock velocity in the specimen. Particle velocities of
pyrolytic graphite were determined hy both methods,

IIT. EXPERIMENTAL ASSEMBLIES

The experimental arrangement which was used is shown in
Figs. 1 and 2. The explosive system, a shock driver or attenuating
system, the specimen plate, and test specimens, 0.3-cm to 0.9-cm
thick, were arranged in sequence. A glass witness plate mounted
0.2 cm from the specimens provided a fixed station for free=surface
velocity measurements. The explosive system used a 15.8-cm
diameter, plane wave lens!! to ensure a shock wave free of side
rarefactions within the region of measurement. This lens pro-
duced a shock wave which emerging on the free-surface of a
precision-machined specimen plate, 2.5-cm thick, was plane
parallel to the free surface within *0.0lusec across an 8 to 10 cm
central section. Two pyrolytic graphite specimens® were positioned
within this section and arranged as shown
below s0 that the shock wave pressure
was incident normal on the original
plane of deposition (C-axis) of
one specimen and parallel
to the plane of deposition
in the other specimen PR
(A-axis) . -

* The pyrolytic graphite, density 2.2 g/cm®, was obtained from
High Temperatures Materials, Inc., Lowell, Mass.

2
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In order to obtain an extensive range of data, it was
necessary to produce in the specimens, shock waves of widely

different fixed amplitudes, This was accomplished in three
ways :

1. The shock pressure transmitted by the detonation
of the explosive system was varied by vsing different explosive
cgmpositions. (In Fig. 1, the plane-wave generator ignited a
liquid explosive, nitromethane, held in a Plexiglas shell.)

2. The shock from the explosive system was
C conve
a lower pressure by the impedance-mismatch method in whic;t:gt::-
nating layers of high and low density materials are utilized
between the explosive and test specimens.

3. Higher shock pressures were produced by the free-run
shots?® in which the explosive system is used to propel a thin
metal driver plate (Fig. 2) across an air gap of several centi~
meters into the back surface of the specimen plate.

The shock producing systems used in the experiments are given
in Table 1.

The shock wave arrivals at the target plate and specimen
free surfar~s were recorded by a rotatin? mirror smear camera
using a reflected light technique'? 3.1 » 2% In this method,
light is reflected continuously from the free surfaces into the
camera. Shock wave arrival at any point along the surface pro-
duces a sudden intensity change in light reflected from that
point. This intensity change on shock wave arrival also signals
the start of free surface motion. In the experimental arrange-
ment shown in Fig. 1, light was provided by the explosion of two
0.0025-cm diameter, tungsten wires threaded into 10-cm long
glass capillary tubes with an inside diameter of 0.1 cm. The
wires were exploded 20 usec. after initiation of the explosive
system by discharging through them the energy from a 4 micro-
farad capacitor charged to 2000 volts. Light from the electrically-
exploded wires passed through the cleared portions of the mirror
to the specimen surfaces, (and the surface of the specimen plate),
back to the mirror, where it was reflected to the smear camera.
The free surfaces of the specimen arnd specimen plate were made
reflective by attaching to them strips of aluminized mylar film.
A thin film of lubricant was used to attach the film to the
free surfaces. Reflected light from the shocked specimen plate
arrangement, shown face-on to the shock in Fig. 3, was used to
make the record shown in Fig. 4. As can be seen in Fig. 3, the
left slit (No. 1) is looking Airectly at the test specimens and
at the portions of the aluminum specimen plate which show between
the test specimens. This arrangemant shows up as nine horizontal
bands on Fig. 4, each labelied as aluminum (specimen plate) or test

[~
~
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specimen (BN, PG #2, PG #l, Nylon). The right hand slit (No. 2) in
Fig. 3 is aligned to look directly at the specimen plate which at
this point is covered by a narrow strip of 0.,015-mm thick mylar film.

As time goes from left to right on Fig., 4, there appear a
sequence of six events, designated A through F. Event A, which
shows as a darkening of the horizontal bands labeled aluminum,
indicates the time at which the shock wave emerged from the aluminum
specimen plate and entered the rear of each test specimen as seen
by slit #l. Event D on these same bands is the same event in time
as A except as viewed by slit 2*¥. Event B is the arrival of the
shock at the front (or free surface) of the test specimens as
viewed by slit #l. Event C is the arrival at the glass witness
plate of the free surfaces of the test specimens, as viewed by
slit #l. Event E, recorded by slit #2, indicates that the mylar
film being driven toward the witness plate is compressing the
intervening air to a state of shock luminosity. Although only
faintly discernible, Event F, also recorded by slit #2, indicates
the arrival of the free-surface of the aluminum at the glass
witness plate. Calculation of the times of these events were then
made as follows:

The horizontal displacement between Event B and Event A
represents the shock wave transit time through the test specimen.
(This displacement on the original film in millimeters divided by
3.8 gives the time in microseconds.) The mean shock wave velocity,
of course, is determined by dividing the test specimen's thickness
by this transit time.

Similarly the horizontal displacement between Events B and
C is used to calculate the free-surface velocity of the test specimen.
(In the measurement of Event C, the sharpest signal occurred at
the first emittance of light from the shocked air layer in the
gap and this was taken as indicating the arrival time although it
obviously is indicating a somewhat too early time. The correction
to the free-surface transit times is about 0.005 ysec and was
obtained from reflected light experiments.)

The horizontal displacement between Events D and F permits
calculation of the free-surface velocity of the aluminum specimen
plate in a similar manner. The shock wave velocity corresponding to
the free-surface velocity of the specimen plate material was cal=-
culated from its equation of state.

*when the shock arrives at each free surface, aluminum, specimen,

or mylar, the camera image would be extinguished over the slit
length viewing that surface and the traces would then go dark.
However, because of the slits' displacement, light reflected from
the mylar 1s still seen between Events A and D, and B and D.
Actually, the sharv intenstty changes at Event A and D occur
simultaneously but are diszpiacca on tiace record because of the slits'
separation.

9
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TABLE ?2

ALONG A AND C AXES

SHOCK WAVE MEASUREMENTS

* Impedance-match calculation
** Pree-surface velocity approximation

10
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! ?' Shock ] Particle®* T Particle**
| | Velocity | Velocity ! Velocity

System | _Axis (ram/pusec) I (mm/usec) {mm/Lisec)
3 c , 5.901 0.893 1.180
3 c i 5.955 0.885 1.170
2 i o 5.790 0.855 0.880
2 i A 5.790 | 0.860 0.880
1 | A | 5.514 0.787 0.793
4 E c E 4.932 0.464
4 lOA ; 4.932 0.464 —_—
5 I A ' 4.420 0.305 —_—
S I a 4.420 | 0.305 | _—
4 oA 5.016 0.404 i —_—
4 i c 5.003 0.479 ‘ —_—

s | ¢ 4.750 0.350 |

! 6 | A | 5.750 | —_ | 0.881
&6 | c ' 5.700 — l 0.884
10 ;. C 5.440 0.798 0.834
10 | a s.440 | 0.802 i 0.880
8 I ¢ 6.550 | 1.504 1.398
8 | A 6.617 1.487 ' 1.393
12 boc 6.337 1.237 1.287
12 oA 6.284 | 1.239 1.306
9 I ¢ 7.803 2.252 2.328
13 c : 8.370 2.516
7 c 8.342 2.501 2.490
14 ¢ [ 7.445 1.900
11 C ' 7.628 2.180
13 A 8.322 2.332 2.390
15 oA ! 7.577 2.059
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IV. RESULTS

The experimental measurements of the shock wave and particle
velocities are listed in Table 2 and plotted in Fig. 5. Particle
velocities determined using the impedance-matching method and the
free-surface velocity approximation are identified in Table 2 and
Fig. 5. Shock wave and particle velocities measured along the
C and A axes are identified only in Table 2. Velocity
differences exceeding experimental errors were not noted between
the shock wave parameters measured along either orientation.
Therefore the data points were not differentiated in regard to
orientation in Fig. 5.

The Rankine-Hugoniot values of pressure and specific volume
calculated using the least square measurements of Ug and u
(Ug=4.149 + 1.690 up) (mm/usec) are listed in Table 3 and blotted
in Fig. 6. The compressibility coefficient, (1/v,) (AV/AP),
computed from differences in the decrease of specific volume for
increasing pressure are plotted against the relative volume,
(V4=V)/Vy, in Fig. 7.

The errors in the experimental measurements of the shock
velocity and particle velocity resulted from uncertainties in
machining the pellets, in mounting the witness plates for free-
surface velocity measurements, in shock wave curvature and in
record analysis. The root-mean~square error of ¥ 100 m/sec in Ug
and t 92 m/sec in u,, lead to relative errors of t 2 per cent in
specific volume and t 7 per cent in pressure (at 200 kb) when the
graphite was compressed to B0 per cent of its original volume.

V. DISCUSSION

The straight line plot of Fig. 5 is typical of the shock
velocity-particle velocity relationship for many solids, and
therefore is useful for the study of shock-induced phase transitions.
If the transformation of pyrolytic graphite to diamond occurred
within this compression range, the shock velocity-particle velocity
co-ordinates for each phase would lie on a separate line each given
by a different slope. This trend is not obtained from the data
plotted in Pig. 5.

Although the shock wave measurements failed to distinguish
between the two orientations in regard to their dynamic compression
characteristics, measurements of the sound velocity showed
considerable anisotropy. Experimental determinations (Table 4)
of the longitudinal sound velocity were made as a function of
temperature from 0°C to 100°C using an ultrasonic method®. At
20°C, the velocity in the C-direction was 2930 m/sec and in the
A-direction 4550 m/sec. The velocity measured in the C-direction
increased by 285 m/sec when the temperature of the test specimen
was raised from 0°C te 100°C. A slight decrease of 28 m/sec was
measured in the A-direction over the same temperature range.

bl
L &L
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TABLE 3

RANKINE-HUGONIOT SHOCK WAVE PARAMETERS
OF PYROLYTIC GRAPHITE

Us up P v

mm/usec | mm/usec (kb) cm® /g
4.149 0 o .4545
4.487 0.200 19.74 .4342
4.825 0.400 42.46 .4168
5.163 0.600 68.15 .4017
$.501 0.800 96.82 .3884
5.839 1.000 128.5 .3766
6.177 1.200 163.1 .3662
6.515 1.400 200.7 .3568
6.853 1.600 241.2 .3484
7.191 1.800 284 .8 .3407
7.529 2.000 331.3 .3338
7.867 2.200 380.8 .3274
8.205% 2.400 433.2 .3216
8.543 2.600 488.7 .3162

13
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TABLE 4

LONGITUDINAL SOUND VELOCITY

C-AXIS A-AXIS
Temp. Velocity Temp. Velocity
(°c) sec) (°c) (mm/yusec)
0.75 2.867 0.20 4.558
10.0 2.887 10.1 4.556
21.8 2.933 20.1 4.555
30.2 2.963 30.0 4.551
39.6 2.973 40.0 4.547
50.6 3.029 50.2 4.543
60.0 3.048 60.0 4.541
70.0 3.078 70.8 4.536
79.9 3.107 80.3 4.534
90.0 3.133 89.6 4.531
98.6 3.152 99.0 4.530
14

UNCLASSIFIED



NOLTR 63-—-73

31IHdVY9 40 ALITIBISSIYUANOD 3HL 9 914

A&mzuv 3NNT0A 214193dS
S0 ov O Ge'0 0€’0

§2'o0

0c'0

-

(NVILSI¥HD

GNV d4307V) 3LIHdVY9 TVNNLYN - -
(NIOVHISIY3IA) ILIHAYYO IVYNLYN V
(NVNOQIH8) 3LlIHdVYH9 TVHNLIYN O

JLlIHAVYY9 JILATIOHAD ©

"
o

<
<)

© ©
o o
(YVEVI3IW) JM¥NSSINd

~
o

@
o

60

v



3LIHdVY9 DILATOHAdD 40 IWNTIOA 3AILVIZY SA ALINIBISS3Y¥AWOD L 'Old

NOLTR 63-73

%A
A=A
8ro SIo 2ro 600 900 €00 oc
G0
e 0l
/’ <|—
[~]

/
aneof

ot

i6



UNCLASSIFIED
NOLTR 63-73

The data of Fig. 7 show that the compressibility of pyrolytic
graphite drops rapidly with increasing pressure; the bulk modulus
decreases by 50 per cent when the relative compression is increased
from 0.08 (40 kilobars) to 0.13 (80 kilobars). An extrapolation
of the data to P=0, yields the initial compressibility, 1/v, (dv/dP)
of pyrolytic graphite as 2.64 x 107*? cm® /dyne. This number is
about 10 per cent less than the static isothermal compressibilitx
value (3.0 x 107*? cm? /dyne) measured by Bridgman® and Richards!
for natural graghite, and is in close agreement with the value
(2.56 x 10™*?cm® /dyne) calculated by Brennan!® from quantum
considerations of the graphite lattice. .

The Rankine-Hugoniot measurements for pyrolytic graphite in
Fig. 6 differ significantly from the measurements of Alder and
Christian for natural graphite from Ceylon. These authors
interpreted the upper line drawn through their data as resulting
from the conversion of the solid to a closely-packed metallic
liquid, and the lower curve beginning at 0.4 megabar to nearly
complete conversion of graphite to diamond. The pyrolytic
graphite, P-V curve, up to 0.5 megabar, however, is well-behaved,
and no phase transformations are indicated.

A plausible explanation of the difference in the equations
of state may be developed from the studies of Samara and Drickamer®
and Bundy?? on the resistance vs static pressure behavior of pyro-
lytic graphite. At low pressures, the resistance of pyrolytic
graphite along its C-axis is nearly 20 times that of random poly-
crystalline graphites. Pyrolytic graphite has a sharper decrease
in the slope of its resistance-pressure curve; its resistance at
130 kb is 7 times greater than polycrystalline graphite. These
data indicate that the compressibility of pyrolytic graphite
decreases more rapidly at high pressures.

The presence of structural impurities in Ceylon graphite is
also a possible explanation of the difference in the P-V data
for pyrolytic graghite and natural Ceylon graphite. In 1942
Lipson and Stokes®® reported the existence of 14 per cent of the
rhombohedral structure in natural graphite from Ceylon. De Carlie
and Jamieson suggest the transformation under shock compression
of regions having the rhombohedral structure as the probable
origin of the diamonds in their recovered specimens. Although
under dynamic (shock wave) compression pyrolytic graphite behaves
similar to pure hexagonal graphite, from which diamonds have not
been produced by shock wave compression, Bundy has recovered
diamonds from a pyrolytic graphite specimen that was statically-
compressed to 130 kb. In Bundy's experiments, in order for the
transformation to occur, it was necessary to heat the sample to a
temperature abowve3000°C during the compression. It is of
interest, therefore, to calcrlate the temperatures associated
with the shock wave compression of pyrolytic graphite. These
temperatures can be calculated® ?' by combining the various
thermodynamic relations with the Rankine-Hugoniot equation:

17
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E -Ey =1/2 (P + Py) (Vo = V) (4)

to obtain the increase in specific energy of material at the
shock front as a function of pressure and volume. The solution
of equation (4) gives a P-V curve (dynamic 1idiabat) of the same
form as an isotherm. Since temperature changes can be expected
to have only a small effect on the compressibility of graphite,
related adiabats and isotherms then can be determined from the
known Rankine-Hugoniot P-V data and temperatures, using the
second law of thermodynamics. The results of these calculations
(Table 5) show that for a shock pressure of 128 kilobars, the
calculated temperature rise in the compressed pyrolytic graphite
is only 189°K, and even when the material is compressed by 490
kilobars the temperature rise of 2100°K is still surprisingly
low. Since in these experiments the duration of shock pressure
was less than lusec and the temperatures due to the shock wave
compression were low, much higher dynamic pressures would have
to be utilized for a direct transition of pyrolytic graphite

to diamond.
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TABLE 5

CALCULATED RANKINE-HUGONIOT TEMPERATURES AND 25°C
ISOTHERM FOR THE COMPRESSION OF PYROLYTIC GRAPHITE

v T(rR-n) P (R-n) Pr
1l _cmd/g (°K) (kb) (xb)
0.4545 298 0 0
0.4250 314 30.3 30.2
0.4014 354 67.5 67.0
0.3945 378 81.5 80.8
0.3882 407 96.2 95.3
0.3764 487 128 127
0.3714 535 145 143
0.3577 725 202 198
0.3486 932 241 236
0.3382 1247 310 302
0.3314 1541 359 349
0.3259 1840 410 397
0.3227 2045 438 423
0.3177 2461 494 476
19
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